11 research outputs found

    Quantification of Amu River Riverbank Erosion in Balkh Province of Afghanistan during 2004–2020

    Get PDF
    In this study, we propose quantifying the Amu River riverbank erosion with the modelled river discharge in Kaldar District, Balkh Province of Afghanistan from 2004 to 2020. We propose a framework synergizing multi-source information for modelling the erosion area based on three components: (1) river discharge, (2) river width, and (3) erosion area. The total river discharge for the watershed shared by Afghanistan and Tajikistan was modelled using hydrological parameters from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) data through multivariate linear regression with ground station data. The river width was determined manually using the Normalized Difference Water Index (NDWI) derived from Landsat data. The riverbank erosion area was derived from the digital shoreline analysis using the NDWI. The digital shoreline analysis showed that, between 2008 and 2020, the average riverbank erosion area in Kaldar District is about 5.4 km2 per year, and, overall, 86.3 km2 during 2004–2020 due to flood events. The significantly higher land loss events occurred at 10 km2 bank erosion during the years 2008–2009 and 2015–2016, and 19 km2 peak erosion occurred during 2011–2012. A linear relation between the erosion area with respect to the discharge intensity and the specific stream power was observed with an R2 of 0.84 and RMSE of 1.761 for both

    Recent advances in the remote sensing of alpine snow: a review

    No full text
    Seasonal alpine snow contributes significantly to the water resource. It plays a crucial role in regulating the environmental feedback and from the perspective of socio-economic sustainability in the alpine regions. While most nations are pursuing renewable energy sources, hydropower generated from snowmelt runoff is one of the primary sources. Additionally, alpine regions with snow cover are major tourist destinations that are often affected by natural disasters such as avalanches. The snowmelt runoff and early avalanche warning require timely information on the spatio-temporal aspects of the snow geophysical parameters. In this regard, advances in remote sensing of snow have been observed to be significant. Recent developments in remote sensing technology in the visible, infrared, and microwave spectrum have significantly improved our understanding of snow geophysical processes. This paper provides a review concerning the qualitative and quantitative studies of alpine snow. The electromagnetic characteristics of the alpine snow are largely dependent upon its inherent geophysical structure and the properties of the snow. Snow behaves differently with respect to the wavelength of the incident radiation. In this paper, we provide a categorical review of the remote sensing techniques for estimating the snow geophysical properties, inclusive of permittivity, density, and wetness corresponding to the wavelength used in the remotely sensed data: (1) visible-infrared spectrum including multispectral/hyperspectral, (2) active and passive microwave spectrums. We also discuss the recent advancements in the remote sensing techniques for approximating the volumetric snowpack parameters such as the snow depth and the snow water equivalent based on active and passive microwave remote sensing. This review further discusses the limitations of the techniques reviewed and future prospects for the retrieval of snow geophysical parameters (SGP) corresponding to the recent progress in remote sensing technology. In summary, the recent advances have laid down a foundation for rigorous assessment of seasonal snow using spaceborne remote sensing, particularly at a regional scale. Yet, the scope for improvements in the methods and payload design exists

    Potential of multispectral reflectance for assessment of snow geophysical parameters in Solang valley in the lower Indian Himalayas

    No full text
    Snow geophysical parameters such as wetness, density and permittivity are a significant input in hydrological models and water resource management. In this paper, we utilize the triangle method based on a feature space developed with the near-infrared (NIR) reflectance and the Normalized Differenced Snow Index (NDSI) for the estimation of surface snow wetness, permittivity and density. The triangular feature space based on NIR reflectance and NDSI is parameterized to yield a linear relationship between the snow wetness and the NIR reflectance. Snow density and permittivity are derived based on the least squares solution of empirical relations based on the observations of surface snow wetness. The proposed methodology was evaluated using Sentinel-2 data, and the modeled snow geophysical parameters were validated with respect to field measurements. Based on the results, it was inferred that the NIR reflectance varies linearly with the liquid water content in the snow. A good agreement was determined between the modeled and measured parameters for wet snow conditions as observed by the coefficient of determination of 0.968, 0.521 and 0.969 for the snow wetness, density and permittivity (real part), respectively. The proposed approach can be significantly utilized with unmanned aerial sensors for monitoring of physical properties of fresh or wet snow and is thus expected to contribute considerably in hydrological applications and avalanche studies

    Assessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using landsat-8 data

    No full text
    In this study, we propose a modified thresholds method for the determination of land surface emissivity (LSE) for snow covered mountainous areas. The conventional Normalized Differenced Vegetation Index (NDVI) thresholds method (NDVITHM) does not discriminate the snow covered pixels with soil pixels in assigning the LSE based on NDVI thresholds. In the proposed approach, we incorporate different thresholding rules based on the Normalized Differenced Snow Index and the S3 index for incorporating separability in the LSE for the snow covered pixels. The LSE thus derived is used to determine the land surface temperature using the Single Channel Method. The approach was evaluated for a study area around the Kullu Valley in the lower Indian Himalayas for a dataset of the winter season of Landsat-8 multispectral data. The observed coefficient of determination values indicated that the proposed method yielded better results with respect to the conventional NDVITHM approach

    Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis

    No full text
    This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies

    Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification

    No full text
    Information on the spatial and temporal extent of snow cover distribution is a significant input in hydrological processes and climate models. Although hyperspectral remote sensing provides significant opportunities in the assessment of land cover, the applications of such data are limited in the snow-covered alpine regions. A major issue with hyperspectral data is the larger dimensionality. Feature selection methods are often used to derive the most informative subset of bands from the hyperspectral data. In this study, a band selection technique is proposed which utilizes the mutual information (MI) between hyperspectral bands and a reference band. The first principal component of the hyperspectral data is selected as the reference band. Two variants of this approach are proposed involving preclustering of bands using: (1) the k-means and (2) the fuzzy k-means algorithms. The MI is derived from weighted entropy of the hyperspectral band and the reference band. The weights are computed from the cluster distance ratio and the cluster membership function for the k-means and fuzzy k-means algorithm, respectively. The selected bands were classified using random forest classifier. The proposed methods are evaluated with four datasets, two Hyperion datasets corresponding to the geographical locations of Dhundi and Solang in India, corresponding to snow covered terrain and two benchmark AVIRIS datasets of Indian Pines and Salinas. The average classification accuracy (0.995 and 0.721 for Dhundi and Solang datasets, respectively) for the proposed approach were observed to be better as compared with those from other state of the art techniques

    Assessment of Land Deformation and the Associated Causes along a Rapidly Developing Himalayan Foothill Region Using Multi-Temporal Sentinel-1 SAR Datasets

    No full text
    Land deformation has become a crucial threat in recent decades, caused by various natural and anthropogenic activities in the environment. The seismic land dynamics, landslides activities, heavy rainfall resulting in flood events, and subsurface aquifer shrinkage due to the excessive extraction of groundwater are among the major reasons for land deformation, which may cause serious damage to the overall land surface, civil infrastructure, underground tunnels, and pipelines, etc. This study focuses on preparing a framework for estimating land deformation and analyzing the causes associated with land deformation. A time-series SAR Interferometry-based technique called PsInSAR was used to measure land deformation, using Sentinel-1 datasets from 2015 to 2021 by estimating land deformation velocities for this region. The obtained PSInSAR deformation velocity results ranged between −4 mm to +2 mm per year. Further, land use land cover (LULC) changes in the area were analyzed as an essential indicator and probable cause of land deformation. LULC products were first generated using Landsat-8 images for two time periods (2015, 2021), which were then evaluated in accordance with the deformation analysis. The results indicated an increase in the built-up areas and agricultural cover in the region at the cost of shrinkage in the vegetated lands, which are highly correlated with the land subsidence in the region, probably due to the over-extraction of groundwater. Further, the outer region of the study area consisting of undulating terrain and steep slopes also coincides with the estimated high subsidence zones, which could be related to higher instances of landslides identified in those areas from various primary and secondary information collected. One of the causes of landslides and soil erosion in the region is identified to be high-level precipitation events that loosen the surface soil that flows through the steep slopes. Furthermore, the study region lying in a high seismic zone with characteristic unstable slopes are more susceptible to land deformation due to high seismic activities. The approach developed in the study could be an useful tool for constant monitoring and estimation of land deformation and analysis of the associated causes which can be easily applied to any other region

    Assessment of Land Deformation and the Associated Causes along a Rapidly Developing Himalayan Foothill Region Using Multi-Temporal Sentinel-1 SAR Datasets

    No full text
    Land deformation has become a crucial threat in recent decades, caused by various natural and anthropogenic activities in the environment. The seismic land dynamics, landslides activities, heavy rainfall resulting in flood events, and subsurface aquifer shrinkage due to the excessive extraction of groundwater are among the major reasons for land deformation, which may cause serious damage to the overall land surface, civil infrastructure, underground tunnels, and pipelines, etc. This study focuses on preparing a framework for estimating land deformation and analyzing the causes associated with land deformation. A time-series SAR Interferometry-based technique called PsInSAR was used to measure land deformation, using Sentinel-1 datasets from 2015 to 2021 by estimating land deformation velocities for this region. The obtained PSInSAR deformation velocity results ranged between −4 mm to +2 mm per year. Further, land use land cover (LULC) changes in the area were analyzed as an essential indicator and probable cause of land deformation. LULC products were first generated using Landsat-8 images for two time periods (2015, 2021), which were then evaluated in accordance with the deformation analysis. The results indicated an increase in the built-up areas and agricultural cover in the region at the cost of shrinkage in the vegetated lands, which are highly correlated with the land subsidence in the region, probably due to the over-extraction of groundwater. Further, the outer region of the study area consisting of undulating terrain and steep slopes also coincides with the estimated high subsidence zones, which could be related to higher instances of landslides identified in those areas from various primary and secondary information collected. One of the causes of landslides and soil erosion in the region is identified to be high-level precipitation events that loosen the surface soil that flows through the steep slopes. Furthermore, the study region lying in a high seismic zone with characteristic unstable slopes are more susceptible to land deformation due to high seismic activities. The approach developed in the study could be an useful tool for constant monitoring and estimation of land deformation and analysis of the associated causes which can be easily applied to any other region
    corecore